ALGORITHMIQUE

B – Programmation d'un algorithme en langage Python – les bibliothèques

Important :Edupython se trouve dans le dossier mathematiques.

Une fois ouvert, fermer les « modules parasites » et aller dans « Fichier » puis « Nouveau » puis « nouveau module python » . Donner un nom au module et sauvegarder sur clé USB.

Exercice 1

Ouvrir Edupython puis repérer la console de calcul et l'éditeur de programme.

Ecrire dans la console les variables a et b affectées des valeurs 12 et 7. Pour cela, taper dans la console : a=12 [touche entrée] b=7 [touche entrée]

Puis taper les expressions

•	a+b	a-b	a*b		a**3
•	from ma sqrt(a)	th impo	rt *	a%b	a//b
•	a=a+1 a	b=a b=b	+b **2	a="hello" b="you"	len(a) a[2]
		b		a+b	a[2:6

Exercice 2 : utiliser des chaines de caractères – calculer dans la console

1. On satisit dans la console l'instruction : A = 'pa', puis les instructions B = A + A et C = B + 'maman'. Quel est l'affichage quand on demande B ? Quand on demande C ?

2. On saisit dans la console : D = A +'radis'. Quel est l'affichage quand on demande dans la console len(D), puis D[2]?

Exercice 3 : comprendre et compléter un programme

On considère le programme ci-contre écrit dans l'éditeur. On demande les valeurs des variables x, y et z dans la console après exécution de ce programme. Qu'obtient-on ?

x=2;y=3 Z=X+Y+X*Y $Z = Z^{**2}$ v=z/2

.....

Vérifier en faisant l'état des variables.

	Х	У	Z	
x=2;y=3				
z=x+y+x*y				
z=z**2				
y=z/2				

Sauvegarder ce programme sous le nom « exercice 3 » sur clé USB dans le dossier SNT/ALGORITHMIQUE/PARTIE B

Ecrire le programme sous le nom « exercice 4 » sur clé USB dans le dossier SNT/ALGORITHMIQUE/PARTIE B

Exercice 6 : aire et périmètre – programmer un calcul

1. Écrire dans la console les instructions qui permettent de calculer l'aire d'un triangle rectangle sachant que les deux côtés de l'angle droit ont pour mesures respectives 2 et 5.

.....

2. Compléter ce programme par les instructions nécessaires au calcul du périmètre de ce triangle.

Exercice 7 : comprendre un programme – analyser une situation

 On considère le programme ci-contre. 1. Quelle valeur obtient-on pour <i>w</i> dans la console ? 2. On modifie la première ligne avec : x = 3 ; y = 1. Quelle valeur obtient-on pour <i>w</i> ? 	<pre>#trouver la formule x=12;y=7 u=x+y #premier calcul v=x**2-y**2 #second calcul w=v%u</pre>
3. Factoriser $x^2 - y^2$, puis expliquer les résultats trouvés.	

EXERCICE 8

Comprendre un programme

On considère le programme suivant :

- from pylab import* 1 plot(1,3,"+") plot(2,6,"*") plot(4,5,"0") 2 3 4
- show() 5
- Compléter la figure affichée par ce programme.

Quelle instruction permet d'afficher la croix rouge sur la figure ?

Ecrire le programme sous le nom « exercice 8 »

sur clé USB dans le dossier SNT/ALGORITHMIQUE/PARTIE B

 Tracer dans le repère suivant la figure affichée par ce programme.

EXERCICE 10 • Écrire un programme	EXERCICE 11		
Écrire un programme 4	On considère le progr		
utilisant la bibliothèque 3- _{pylab} qui afficherait 2- la figure suivante :	1 from 2 a=r 3 b=r 4 c=a		
	1. Donner le type de d		
1	2. Donner les valeurs		
2			
3			
4			
5	3. Avec quelle instrue		
6	aléatoire du type « f		
7			

Ecrire le programme sous le nom « exercice 10 » sur clé USB dans le dossier SNT/ALGORITHMIQUE/PARTIE B

• Interpréter un programme

gramme ci-dessous :

```
om random import*
randint (1,4)
random()
a+b
```

chaque variable.

rs possibles pour chaque variable.

uction pourrait-on obtenir un nombre flottant » entre 0 et 5?

Ecrire le programme sous le nom « exercice 11 » sur clé USB dans le dossier SNT/ALGORITHMIQUE/PARTIE B